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ABSTRACT

In this paper we present the constraint manifold of the planar
RR dyad. The constraint manifold is an analytical representation
of the workspace of the dyad. We then derive a technique, utilizing
the constraint manifold, for performing the dimensional synthesis
of planar RR dyads for approximate rigid body guidance through
n positions. Finally, we present the implementation of the de-
sign methodology in the software VISSYN and discuss its use in
a design case study.

INTRODUCTION

The constraint manifold of a dyad represents the ge-
ometric constraint imposed on the motion of the moving
body. This geometric constraint on the moving body is
a result of the kinematic structure of the dyad; e.g. its
length and the location of its fixed and moving axes. The
constraint manifold is an analytical representation of the
workspace of the dyad which is parameterized by the dyad’s
dimensional synthesis variables. Here we derive the con-
straint manifold of planar RR dyads in the image space of
planar displacements and utilize this constraint manifold to
perform dyadic dimensional synthesis for approximate rigid
body guidance.

The derivation of the constraint manifold in the image
space involves writing the kinematic constraint equations
of the dyad using the components of a planar quaternion.
We view these equations as constraint manifolds in the im-
age space of planar displacements, see Bottema and Roth
(1979) and McCarthy (1990). The result is an analytical
representation of the workspace of the dyad which is param-
eterized by its dimensional synthesis variables. The synthe-

sis goal is to vary the design variables such that all of the
prescribed positions are either: (1) in the workspace, or,
(2) the workspace comes as close as possible to all of the
desired positions. Recall that in general five is the largest
number of positions for which an exact solution is possible,
sece Suh and Radcliffe (1978). Previous works discussing
constraint manifold fitting for an arbitrary number of posi-
tions include Ravani and Roth (1983), Bodduluri and Mec-
Carthy (1992), Bodduluri (1990), and Larochelle (1994).
These works sought to use numerical non-linear optimiza-
tion techniques to minimize some distance measure from
the constraint manifold to the desired positions. These ef-
forts are difficult to implement due to the highly non-linear
nature of the problem. For example, when solving for a
spherical fourbar mechanism for 10 positions Bodduluri and
McCarthy (1992) utilized 120 starting cases of which 38 con-
verged to the solution.

The synthesis procedure presented here involves the
projection of the constraint manifold onto $#* and using
three-dimensional computer graphics to visualize the pro-
jected manifold. The designer then varies the dimensional
synthesis variables until the constraint manifold satisfies the
synthesis goals. In what follows, we apply the synthesis pro-
cedure to planar RR dyads and we illustrate its application
in a case study.

IMAGE SPACE OF PLANAR DISPLACEMENTS

First, we review the use of planar quaternions for de-
scribing planar rigid-body displacements. A general planar
displacement, occurring in the X — Y plane, may be de-
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scribed bya 3 x 3 orthonormal rotation matrix [A] and a
translation vector d = [d, dy 1]7. Associated with the ma-
trix of rotation [A] is an axis of rotation s = [0 0 17 and a
rotation angle 6.

Using the translation vector d and the rotation angle 6,
we can represent a planar displacement by the four dimen-
sional vector q which is written as, see McCarthy (1990),
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We refer to q as a planar quaternion. The components of q
satisfy,

Gla): +¢—1=0 (2)

Note that q, given by Eq. 1, is a four dimensional vector
which satisfies the constraint equation, Eq. 2, therefore, the
components of q form a three dimensional algebraic mani-
fold. We denote this manifold as the image space of planar
displacements.

Planar Quaternion Product

Given two planar quaternions, g and h, their product
yields a planar quaternion which represents the planar dis-
placement obtained by the successive application of the two
given displacements. We may write the product of two pla-
nar quaternions in the following matrix form, see McCarthy
(1990),

gh=Gth=H7¢g (3)
where,
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CONSTRAINT MANIFOLD

In this section we derive the constraint manifold of the
planar RR dyad. This dyad may be combined serially to
form a complex open chain or, when connected back to the
fixed link, may be joined so as to form a closed chain; e.g.
a planar four-bar mechanism.

The constraint manifold is derived by using the geo-
metric conditions that the joints of the dyad impose on the
moving body. The structure equations for the geometric
constraints are based upon the work of Ge (1990), Mc-
Carthy (1990), Suh and Radcliffe (1978), and Bodduluri
(1990). Using the image space representation of planar dis-
placements and the geometric constraint equations of the
dyad we arrive at constraint equations in the image space
that are parameterized by the dimensional synthesis vari-
ables of the dyad.

A planar RR dyad of length a is shown in Fig. 1. Let
the axis of the fixed joint be specified by the vector u mea-
sured in the fixed reference frame F and let the origin of
the moving frame be specified by v measured in the link
frame A. The dimensional synthesis variables of the dyad
are u, v, a, and 1. Moreover, let us define the vector A
as representing the moving axis as measured in the moving
frame M. The vectors v and A are related by,

P (4)

where % is the angle prescribing the orientation of M with
respect to A.

We obtain the structure equation in the image space of
planar displacements by using planar quaternions to repre-
sent the displacements from F to M,

d = x(us)y (uy)2(0)x(a)2(¢)x(vz)y (vy)2(s) ()

where x(-), y(+), and z(-) are planar quaternion representa-
tions of displacements either along or about the X, Y, or 7
axes respectively.

We now rewrite d as,

d=gdh (6)

where: g is the displacement from F to O, where O is the
frame with origin at the fixed pivot as shown in Fig. 1,
g = x(us)y(uy), h is the displacement frame A to M,
h = x(v,)y(vy)z(¢) and d' is the displacement along the
dyad, d' = z(8)x(a)z(¢). Performing the quaternion multi-
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Figure 1. A Planar RR Dyad

plications yields, and,
%2” sin 3%’—[1 + %ﬂ cos %
52’-cos€—;‘zz h= 5 cos 2'_"2ismz (9)
' £ gin 422 sin
d = sin %@ (M cos 3,“,1

Finally, using Eq. 3 we express Eq. 6 as,
d=cd =G*Hd (10)

In Eq. 10 we have a surface in the image space of planar
8 displacements which is parameterized by the dimensional
(8) synthesis variables of the dyad. This surface is the con-
straint manifold of the planar RR dyad.
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PROJECTION ONTO %3

In the previous section we obtained the constraint man-
ifold of the planar RR dyad in the image space of planar
displacements. The image space is a three dimensional al-
gebraic manifold on R*. We now project the constraint
manifold in the image space onto R3.

We identify the first three planar quaternion coordi-
nates of points in the constraint manifold with the coordi-
nates of a point cm in 3 as follows,

Ccimy d1
cm= |emy | <= | dy (11)
cms ds3

where dy, do, and d3 are the first three components of the
planar quaternion d given by Eq. 10. The locus of all points
cm is the projection of the workspace of the dyad onto %3.
Moreover, we note that the mapping given by Eq. 11 is one-
to-one. Hence, associated with each position of the moving
body M is a point cm in ®* which is the projection of the
point d in the image space given by Eq. 10.

Note that in the special case in which ¢ = g =h =
[0 0 0 1)7, that is to say frame O is coincident with frame
F and frame M is coincident with frame A (i.e. uy = uy =
vy = vy = 9 = 0), the locus of all points cm is a right
circular cylinder of length 2, radius §, and with major axis
along the Z axis, see Fig. 2. For the cases in which g # 0
or h # 0 we see from Eq. 10 that the right circular cylinder
undergoes a coordinate transformation ¢ which distorts the
cylinder but that the lines of constant § and ¢ remain intact.

SYNTHESIS

We proceed by utilizing the projection of the constraint
manifold onto $* given by Eq. 11 to perform approxi-
mate motion synthesis. Utilizing the coordinate assign-
ments found in Fig. 1 the design vector r for a planar RR
dyad is,

(12)
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The goal of the synthesis procedure is to determine r such
that the moving body moves as close as necessary to the n
prescribed positions. First, we project the constraint man-
ifold of an initial dyad onto ®®. Next, we determine the
image point associated with each of the desired positions
and project these points onto ?3. Hence, each desired posi-
tion of the moving body is represented by a point in %*. We

then interactively examine %3 and vary the components of
r until the projected constraint manifold passes through, or
comes as close as necessary, to all of the n desired points(i.e.
the desired positions). Since this is a highly visual synthe-
sis procedure it is best understood by the series of images
found in the case study below.

Finally, several planar RR dyads may be combined seri-
ally to form complex open chain robots or, when connected
back to the fixed link, they may be joined so as to form a
closed chain; i.e. a planar four bar mechanism. For these
closed chains the constraint manifold of the mechanism is
the intersection of the constraint manifolds of its open sub-
chains. For example, the constraint manifold of a planar
four bar mechanism is the the intersection of the constraint
manifolds of its driving and driven dyads. Hence, we may
synthesize closed chain mechanisms by varying their syn-
thesis variables until the intersection of their projected sub-
chain constraint manifolds passes through, or comes as close
as necessary, to all of the n desired projected positions.

VISSYN

The synthesis procedure described above has been im-
plemented in C using the GI graphics library on a Silicon
Graphics Indigo? UNIX based workstation in the program
VISSYN ! (VISual SYNthesis).

A design session using VISSYN proceeds as follows.
Upon execution, the n desired positions and r for the ini-
tial dyad are read from a data file. The projected con-
straint manifold is then displayed. Next, centered at each
of the projected desired positions a solid sphere is drawn,
see Fig. 3. The user then proceeds to interactively vary the
dimensional synthesis variables (i.e. ug, 4y, Vs, vy, @, and
) while visually inspecting the projected constraint man-
ifold. This process continues until the constraint manifold
passes satisfactorily near the n projected desired positions.

In order to aid the designer in visualizing the physi-
cal design space of the dyad a two-dimensional display of
the current dyad is available, see Fig. 4. The displays of
the constraint manifold and of the design space of the dyad
are updated continuously as the design variables are ma-
nipulated. Moreover, the distance in the image space from
the constraint manifold to each desired position is digitally
displayed in the two-dimensional display. This distance is
computed using the metric presented by Ravani and Roth
(1983), Bodduluri (1990), and Larochelle (1995).

1VISSYN will be made available by the author upon request.
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Figure 2. The Simplest Projected Constraint Manifold

CASE STUDY

In this section we present an example of the design of
a planar RR dyad for 10 position rigid body guidance. The
10 desired positions are listed in Thl. 1. These are the same
10 positions that were used by Ravani and Roth (1983) to
demonstrate their numerical constraint manifold synthesis
procedure.

Using VISSYN in approximately 5 minutes of user time
a dyad with u = [13.98 — 2.53]7, v = [7.64 —8.26]7, a =

6.87, and 9 = 157.34 was found. This dyad is illustrated
in Fig. 4 with the solid red circle being the fixed pivot, the
thin green circle being the path of the moving pivot, and
the solid green circles locate the moving pivot, using the
vector A = [10.23 — 4.68]7, with respect to M. Note that
if the dyad was an exact solution that the centers of the
solid green circles would lie on the thin green circle. The
projected constraint manifold of the solution dyad and the
10 desired positions are shown in Fig. 3.
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| Pos. | dx [ d, | 4 |

1 0.0 0.0 40.0
2 4.5 4.0 20.0
3 8.5 8.0 0.0

4 13.0 | 11.5 | =30.0
5 13.0 | 12,5 | —35.0
6 9.5 14.0 | —35.0
7 5.0 13.5 | —30.0
8 1.0 10.5 | —15.0
9 -10 1| 65 0.0

10 -1.5 | 3.0 20.0

Table 1.

In Ravani and Roth (1983) two solution dyads are pre-
sented. Using their metric the position errors of the dyads
are 0.016 and 0.013 while the error of the dyad obtained
using VISSYN is 0.008, as is listed in Fig. 4.

CONCLUSION

In this paper we have derived the constraint manifold
of the planar RR dyad. The constraint manifold yields an
analytical representation of the workspace of the dyad in
the image space of planar displacements. We then pre-
sented a synthesis procedure for approximate rigid body
guidance which utilizes the visualization of the projection
of the constraint manifold onto R3. The design process has
been implemented into the program VISSYN and its use
was illustrated in a design case study.

By employing modern computer graphics we have uti-
lized the constraint manifold of the planar RR dyad to syn-
thesize solutions for approximate rigid body guidance with-
out encountering the numerical difficulties that are usually
involved. It is our hope that by employing advanced syn-
thesis tools such as kinematic mappings with a display of
the physical design space will yield new and useful machines
and mechanisms.
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Figure 4. VISSYN Design Space Display
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